MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / G* =  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]







                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]




                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]




                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]




                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]





                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]




                                           - [  G*   /.    ] [  [.]

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]




                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]



                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]






                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]






                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]




O fenômeno da desintegração espontânea do núcleo de um átomo com a emissão de algumas radiações é chamado de radioatividade. A radioatividade transforma núcleos instáveis fazendo surgir as radiações α, β e γ.

A lei fundamental do decaimento radioativo afirma que a taxa de decaimento é proporcional ao número de núcleos que ainda não decaíram:

Esta é a equação da lei básica para a radioatividade.

A medida da intensidade da radioatividade é feita em duas unidades que são:

  • Curie: Definido como a quantidade de material radioativo que

dá  desintegrações por segundo.

  • Rutherford (Rd): é definido como a quantidade de substância radioativa que dá  desintegrações por segundo.

Na natureza existem elementos radioativos que exibem transformação sucessiva, isto é, um elemento decai em substância radioativa que também é radioativa. Na transformação radioativa sucessiva, se o número de nuclídeos qualquer membro da cadeia é constante e não muda com o tempo, é chamado em equilíbrio radioativo.[3] A condição de equilíbrio é portanto:

ou

.

Onde os subscritos P, D e G indicam núcleo-pai (do Inglês parent), núcleo-filha (do Inglês daughter) e núcleo-neta (do Inglês granddaughter) respectivamente.

O estudo da radioatividade e radioisótopos tem várias aplicações na ciência e tecnologia. Algumas delas são:

  1. Determinação da idade de materiais antigos com auxílio de elementos radioativos.
  2. Análises para obtenção de vestígios de elementos.
  3. Aplicações médicas como diagnóstico e tratamento.



Quantização da radioatividade

O decaimento radioativo é um processo que envolve conceitos de probabilidade. Partículas dentro de um átomo têm certas probabilidades de decair por unidade de tempo de uma maneira espontânea. A probabilidade de decaimento é independente da vida previa da partícula. Por exemplo se N(t) é considerado o número de partículas como função do tempo, então, temos a taxa de decaimento sendo proporcional a N.[5]

Formulando matematicamente temos:

A constante de proporcionalidade tem dimensão inversamente proporcional ao tempo.

onde  é o número inicial de partículas. O número de partículas de um dado elemento decai exponencialmente numa taxa diretamente proporcional ao elemento. Define-se a vida média de um elemento como

Tendo um exemplo de muitas partículas, 1/e delas (cerca de 37,8%) não decairão após um tempo . Na Física Nuclear trabalha-se com o conceito de vida média, que é o tempo depois do qual a amostra se reduziu à metade.[5]

Relacionando essas duas quantidades, assim temos:



Comments